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This paper presents a novel navigation strategy of robot to achieve reaching target and obstacle avoidance in unknown dynamic
environment. Considering possible generation of uncertainty, disturbances brought to system are separated into two parts, i.e.,
bounded part and unbounded part. A dual-layer closed-loop control system is then designed to deal with two kinds of disturbances,
respectively. In order to realize global optimization of navigation, recurrent fuzzy neural network is used to predict optimal motion
of robot for its ability of processing nonlinearity and learning. ExtendedKalman filtermethod is used to train RFNNonline.Moving
horizon technique is used for RFNNmotion planner to guarantee optimization in dynamic environment. Then, model predictive
control is designed against bounded disturbances to drive robot to track predicted trajectories and limit robot’s position in a tube
with good robustness. A novel iterative online learning method is also proposed to estimate intrinsic error of system using online
data that makes system adaptive. Feasibility and stability of proposed method are analyzed. By examining our navigation method
on mobile robot, effectiveness is proved in both simulation and hardware experiments. Robustness and optimization of proposed
navigation method can be guaranteed in dynamic environment.

1. Introduction

During past decades, navigation which can fully reflect
artificial intelligence and automatic ability of robot has been
an attractive topic [1]. Autonomous navigation is realized
in kinds of robots like ground mobile vehicles, unmanned
underwater vehicle (UUV), unmanned aircraft, etc. [2–5].
These robots with navigation technology have been applied
popularly in various fields such as industry, public service
places, transportation, andmilitary [6]. Generally, navigation
structure is made up of three main components, perception,
decision, and control. Different sensors, such as lidar, inertial
measurement unit, GPS, and visual camera, have been used
for this purpose generating a series of solutions. This is
beyond this paper’s scope.Themain problems that this paper
prefers to solve are decision and control under assumption of
known perception capability.

Navigation of robot in objective world is complex for
the reasons of existing various uncertainty and nonlinearity

of system [7, 8]. Disturbance or perturbation caused by
uncertainty brings challenge to design navigation system.
Many inevitable factors lead to uncertainty like dynamic
circumstances, sensor noises, and model error [9]. They are
coupled and impact together on system. In order to achieve
real-time navigation and guarantee safety of robot taking
obstacles into account, nonlinear optimal program of robot
motion needs to be carried out [10]. However, tomake system
stable and robust under this condition, control strategy can
be tedious and time-consuming. So, effective method should
be designed to deal with optimal robust problem of the
nonlinear system.

Fuzzy logic control is well suited to control robot for
its accurate calculation capability and inference capability
under uncertainty [11]. Many researchers have implemented
this method to deal with navigation of robot. Wang [12]
proposed a real-time fuzzy logic control in unknown envi-
ronment to achieve obstacle avoidance. However, fuzzy logic
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based method is too sample to deal with complex prob-
lem and the structure is less of flexibility. Neural network
based approaches have been widely employed in closed-loop
control for their strong nonlinear approximation and self-
learning capability [13]. Many researches have been done
on feedforward multilayer perception neural network for
classification, recognition, and function approximation. In
[14], recurrent neural network is used to solve optimal
navigation problem ofmultirobot. By constructing formation
and using penalty method, navigation becomes convex opti-
mization problem. Recently, fuzzy logic and recurrent neural
network structure are combined to form a new structure, i.e.,
recurrent fuzzy neural network (RFNN). RFNN combines
both advantages of neural network and fuzzy logic and
earns good nonlinear control capability [15]. In [16], interval
type 2 fuzzy neural network is used to control robot. By
tuning parameters of structure with genetic algorithm, stable
navigation is realized. However, optimization of navigation is
not guaranteed and disturbances are not considered in their
method.

Model predictive control (MPC) has been successfully
applied to process industries during past decades for its
online optimization programming ability [17]. At each time-
step, MPC obtains a finite sequence of control by solving
a constrained, discrete-time, optimal control problem over
prediction horizon. Current control variable of the sequence
is regarded as control law to be applied to the system. By
solving the optimal control problem within one sampling
interval, MPC can effectively manage MIMO system and
hard constraint system. Robust nonlinear MPC (RNMPC) is
an active area of research and can easily handle constraint
satisfaction against dynamic uncertainty [18]. If a controlled
system is ISS with respect to bounded uncertainties, it
has a stability margin and is therefore stable with respect
to unmodeled dynamics [19]. Many researches have been
published using MPC method realizing optimal navigation
[20]. In [21], a dual-layer architecture is proposed using
MPC and maximum likelihood estimation method to deal
with navigation in uncertainty environment. In contrast to
our method, it is a kind of probabilistic framework based
method. In [22], MPC is also developed to micro air vehicle
system generating real-time optimal trajectory in unknown
and low-sunlight environments. In [23], autopilot controlling
the nonlinear yaw dynamics of an unmanned surface vehicle
is designed using MPC combined with multilayer neural
network.

Inspired by methods mentioned above, a dual-layer con-
trol system is designed in this paper. Considering nonlinear
nonconvex property of navigation in dynamic environment,
RFNNbased planner is used to programoptimal trajectory of
robot. Many methods can be used to train RFNN like back-
propagation (BP), genetic algorithm, evolutionary strategy,
and particle swarmoptimization [24]. ExtendedKalmanfilter
(EKF) has attracted many researchers for its characteristics of
fast convergence, little limitation in training data, and good
accuracy in mathematics process [25]. So, in this paper EKF
is used to train RFNN to achieve optimal navigation. A kind
of nonlinear robust MPC is then designed to generate actual
control command of robot to drive robot to track predictions.

Considering that there exists intrinsic error between known
model and actual model of navigation system of robot, online
estimation method needs to be designed. Learning based
controller is more adaptive in practical application [26]. By
using online data, accurate approximation of the true system
model can be constructed. These learning methods mainly
consist of Gaussian process and iterative learning methods
[27]. In this paper, a specific application based iterative
learning method is designed to update system model.

The rest of the paper is structured as follows. Section 2
introduces description of problem settled in this paper.
Section 3 describes the working of proposed navigation
strategy. Section 4 proves stability and feasibility of proposed
method. Section 5 illustrates experiments and results and
finally Section 6 concludes the proposed scheme.

2. Problem Description

In this paper, navigation of robot is realized in unknown
environment and the system is nonlinear with constraints.
Robust and optimal navigation should be achieved consid-
ering dynamic environment and disturbances.

Consider the following discrete nonlinear model of robot
system:

x𝑘+1 = f (x𝑘, u𝑘) + w1𝑘

y𝑘 = h (x𝑘, u𝑘) + w2𝑘, (1)

where u𝑘 ∈ R𝑛1 is control input and x𝑘, x𝑘+1 ∈ R𝑛2 are
system states at time 𝑘 and 𝑘 + 1, respectively. y𝑘 ∈ R𝑛3 is
measured output at time 𝑘 and w1𝑘 ∈ R𝑛2 ,w2𝑘 ∈ R𝑛3 are
process andmeasurement disturbances, respectively. f(∙) and
h(∙) are nonlinear functions where f(∙) is model of system
and h(∙) is model of observation. Realistic physical plants are
strictly proper, so output function h(x𝑘, u𝑘) can be simplified
as h(x𝑘).

In (1), w1 is model error caused disturbance while w2
mainly contains sensor noise and dynamic environment
caused disturbance. Among these uncertainties, dynamic
environment changes in random leading to unboundedness
of disturbance. On the other hand, model error and sensor
noise are bounded and normally are Gaussian that can be
estimated. To design useful control method decomposition
and combination are used for disturbances as

w2 = w2 + w2. (2)

Feedback controller is usually designed using y to generate
control input u, so (1) changes as

x𝑘+1 = f (x𝑘,u𝑘) + w1𝑘 + w2𝑘

y𝑘 = h (x𝑘) + w2𝑘 , (3)

where w = f(C(w)). C(∙) represents controller. Then, dis-
turbances are separated into two parts, bounded disturbance
represented as Δ1𝑘 = w1𝑘 + w2𝑘 and unbounded disturbance
represented as Δ2𝑘 = w2𝑘 .
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Figure 1: Control system considering disturbances.

To achieve navigation, suitable controller should be
designed. Considering disturbances divided into two items,
we separate strategy into two phases. Real-time program of
optimal trajectory is designed at first and robust control of
robot is then designed to track the optimal trajectory. In
program phase, recurrent fuzzy neural network with moving
horizon is designed to plan optimal motion to get robust
performance considering Δ2 and can be illustrated as 𝐶1.
AfterΔ2 is limited, robustmodel predictive control method is
designed in tracking period to deal with Δ1 and can be illus-
trated as𝐶2.Δ1 is decoupled fromΔ2, so Δ2 is not considered
during tracking. Then, a controller with dual-layer structure
is formed to deal with two kinds of disturbances, respectively.
Structure is shown in Figure 1. By separating controller into
two parts, bounded and unbounded disturbances are suitably
dealt with so that optimal robust performance is realized.
Further introduction of control system is in next section.

3. Control System Design

To realize robust optimal navigation of robot, rational frame-
work of control system is designed in this section. Robust
nonlinear model predictive controller and recurrent fuzzy
neural network based planner are combined to make up the
whole control system. Flow diagram is shown in Figure 3
which is extension of Figure 2. Figure 3 emphasizes each part’s
function in navigation strategy and is consistent with Figure 2
whichmainly explains relationship of uncertainty, controller,
and nominal system.

The system is made up of nonlinear planner, robust
tracker, and local plant. As mentioned in Section 2, there
exist kinds of uncertainty bringing disturbances to robot. In
order to improve the performance of robot avoiding obstacles
and reaching the target, feedback loops that can be used to
construct constraints of system are added. Extended Kalman
filter is used to train RFNN online to program optimal
motion of plant. Iterative online leaning method is used to
make system adaptive to disturbance improving performance
of MPC.

3.1. RFNN Based Nonlinear Program. Objective function
and constraints should be set to realize motion program of
navigation. Considering (3), nominal state-space function of
robot is represented as

z𝑘+1 = f (z𝑘, k𝑘) + 𝐶
y𝑘 = h (z𝑘) , (4)

where Δ1 discussed later keeps invariant in this department
and is represented as 𝐶. Objective function reflecting short-
est distance can be used:

min 𝐽 = ∑
𝑘

𝑑 (z𝑘) , (5)

where 𝑑(∙) is distance operator.
RFNN structure used here contains five layers and is

shown in Figure 3. In order to achieve obstacle avoidance and
reach target, output of system is chosen as input of RFNN,
i.e., s = y ∈ R𝑛3 , while k = s ∈ R𝑛1 is generated
control command to local plant. Subscript 𝑘 is omitted here
for simplification. Each node inmembership layer performs a
membership function. Membership functions can be defined
with Gaussian MF as

𝑠1𝑖1𝑗1 = exp[
[
−(𝑠𝑖1 − 𝑐𝑖1𝑗1)2𝜎2𝑖1𝑗1 ]

]
, (6)

where exp[∙] is exponential function. c, 𝜎 are the mean and
standard deviation of Gaussian function, respectively. The
values of them are initially set via expert experience before
the strategy begins.

As shown in Figure 3, each input parameter has two
membership values, so there are 2𝑛3 fuzzy rules in fuzzy
rule layer. The firing strength of each rule at current step is
determined by outputs ofmembership layer through an AND
operator. The result of each rule is calculated as

𝑠2𝑖2 = ∏
𝑗1

𝑠1𝑖1𝑗1 . (7)

Moreover, a local internal feedback with real-time delay is
added to each node of this layer to improve the robustness
of the control system.Themathematical form is described by

𝑠3𝑖2 (𝑘) = (1 − 𝛾) 𝑠2𝑖2 + 𝛾𝑠3𝑖2 (𝑘 − 1) , (8)

where 𝛾 represents the weight of self-feedback loop and is a
constant; s3(𝑘) is current output of this layer while s3(𝑘 − 1)
represents the last step output.

Then, according to the definition of Takagi-Sugeno-Kang
(TSK) fuzzy rules, the functions are combined linearly in
consequent layer. TSK weight is defined as

𝑤𝑖3𝑖4 = 𝑎1𝑖3𝑖4𝑧1 + 𝑎2𝑖3𝑖4𝑧2 + ⋅ ⋅ ⋅ + 𝑎𝑛3𝑖3𝑖4𝑧𝑛3 , (9)

where w ∈ R2
𝑛3×𝑛1 , a1, . . . , a𝑛3 ∈ R2

𝑛3×𝑛1 . For the purpose of
simplifying calculation, it is assumed that a = a1 = ⋅ ⋅ ⋅ = a𝑛.
The output of this layer can be computed as follows:

𝑠4𝑖4 = ∑
𝑖3

𝑤𝑖3𝑖4𝑠3𝑖2 . (10)
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Figure 3: Structure of RFNN.

Activation function is set at each node of output layer to limit
output forming output constraint:

𝑠𝑖4 = 𝑠4𝑖41 + 𝜂𝑖4 𝑠4𝑖4  , (11)

where 𝜂 is constant and its value depends on practical
application.

In order to achieve motion program, extended Kalman
filtermethod proposed in [28] ismodified to train theweights
of RFNN structure online. At step k, the EKF function is
expressed as follows:

a𝑘+1 = a𝑘 − K𝐸𝐾𝐹𝑘 e𝐸𝐾𝐹𝑘 , (12)

e𝐸𝐾𝐹𝑘 = o𝑘 − o𝑑𝑘, (13)

K𝐸𝐾𝐹𝑘 = P𝑘O𝑘 [R𝐸𝐾𝐹𝑘 + O𝑇𝑘P𝑘O𝑘]−1 , (14)

P𝑘+1 = Q𝐸𝐾𝐹𝑘 + [I − K𝐸𝐾𝐹𝑘 O𝑇𝑘 ] P𝑘, (15)

where K𝐸𝐾𝐹 is Kalman gain matrix. e𝐸𝐾𝐹 is estimation error.
o𝑑 is desired value of o which is observation vector. R𝐸𝐾𝐹 is

covariance matrix of measurement error. Q𝐸𝐾𝐹𝑘 is constant
matrix and is set according to [28], P is covariance matrix
of estimation error, and I is identity matrix. O is orderly
derivative matrix of observation vector with respect to RFNN
weights.

Constraints of obstacles and target during navigation
process are achieved by establishing observation vector in
(13); Jacobian matrix is then calculated to predict weights of
RFNN:

O = 𝜕o𝑇𝜕a
. (16)

Target constraint is always prior. Only when obstacles
threaten safety of robot, is obstacle constraint considered in
(13). As initial weights are generated in random, by repeating
calculation suboptimal trajectory can be got satisfying (4).
Calculation time is t depending on repetition. To deal with
uncertainty caused by dynamic environment, moving hori-
zon is used forming online dynamic program. 𝑇𝑟𝑎1, . . . , 𝑇𝑟𝑎𝑛
are trajectories generated in different horizon. 𝑡Δ is time
between contiguous horizons. Time constraint should be
satisfied:

𝑡 < 𝑡Δ, (17)

where 𝑡Δ depends on uncertainty. A new variable is set to
judge disturbance using quadratic form as

Δ = (o𝑝
𝑘
− o𝑟𝑘)𝑇QΔ (o𝑝

𝑘
− o𝑟𝑘) , (18)

where o𝑝
𝑘
and o𝑟𝑘 are observation vectors at each step of

program trajectory under system (4) and real trajectory
under system (3), respectively. QΔ is matrix of weights. Upper
bound is set to get

Δ < Δ 𝑏𝑜𝑢𝑛𝑑, (19)

According to (4)∼(19), global motion program is obtained
with bounded Δ2. However, during practical process there
exists Δ1 affecting performance of navigation. So, suitable
control and online learning method are needed in tracking
procedure to guarantee robustness of system and ensure
effective estimation of disturbances.



www.manaraa.com

Mathematical Problems in Engineering 5

3.2. Learning Based Robust Tracking

3.2.1. Robust NonlinearModel Predictive Control. Tube-based
robust nonlinear model predictive control makes closed-loop
trajectory, in the presence of disturbances, lie in a tube whose
center is nominal trajectory. In this paper, nominal trajectory
is generated by RFNN motion planner and then a tube-
based approach is adopted to tracking system considering
uncertainty caused by model and location error.

Considering (3) and (4), robot system to be controlled
is the following nonlinear state-space form with bounded
disturbances and Δ2𝑘 is not included:

x𝑘+1 = f (x𝑘,u𝑘) + Δ1𝑘, (20)

where f(∙) is twice continuously differentiable.
If cost function of MPC is Lipschitz continuous; there

exist two invariant sublevel sets of X such that the smaller
set is robustly asymptotically stable for controlled system
with a region for attracting the larger set [29]. Planned
state and control input of navigation system in Section 3.1
are chosen as nominal state and control represented as Z,
V respectively. The controller aims at steering robot with
disturbances close to index prediction and keeping actual
trajectory of robot in a tube with good robustness. However,
nominal state and control provided above are finite and the
whole trajectory keeps changing as introduced in (17) ∼ (19).
To obtain effective and tightened reference sets, the following
procedure is used. An object is defined as

T = {(𝑇𝑟𝑎1, 𝑡Δ1) , (𝑇𝑟𝑎2, 𝑡Δ2) , . . . , (𝑇𝑟𝑎𝑙, 𝑡Δ𝑙) , . . .} , (21)

representing trajectories and update interval in different
horizon. Only the first 𝑡Δ step of 𝑇𝑟𝑎 is valid motion. And
interpolation is applied to get tightened Z and V .

Considering deviation of state and control between actual
system and nominal system, cost function to beminimized is
defined as

𝐽 (x, u, 𝑘, 𝑙) = (x − z𝑙)𝑇Q (x − z𝑙)
+ (u − k𝑙)𝑇 R (u − k𝑙) + 𝐽𝑓 (x; z𝑓, 𝑙) , (22)

where Q ∈ R𝑛2×𝑛2 and R ∈ R𝑛1×𝑛1 are positive definite.
z𝑙 ∈ Z and k𝑙 ∈ V are reference trajectory and control action,
respectively. 𝐽𝑓(∙) is terminal cost function and z𝑓 is terminal
state that is changing due to (21).

Optimal control problem can be illustrated as

min
𝑢

𝐽 (x, u, 𝑘, 𝑙) . (23)

The solution of (23) is u∗ = {u∗0 , u∗1 , . . . ,u∗𝑁−1} and associated
state trajectory is x∗ = {x∗0 , x∗1 , ..., x∗𝑁−1}. 𝜅 = u∗0 is applied to
uncertainty system, i.e., the first element in the sequence. If
x = z𝑙, then u = k𝑙, so that 𝐽(x,u, 𝑘, 𝑙) = 0. Minimum value
of cost function at each step of trajectory is represented as𝐽min(x, 𝑘, 𝑙). Level set of cost function defines a neighborhood
of nominal trajectory. A tube can be defined [29]:

𝑆𝑑 = {x | 𝐽min (x, 𝑘, 𝑙) ≤ 𝑑} . (24)

Endstart

1

2

k

k

Figure 4: Dynamic iterative route.

According to [30], stable condition exists:

minu {𝐽𝑓 (f (x,u) ; z𝑓, 𝑙) + (x − z𝑓)𝑇Q (x − z𝑓)
+ (u − k𝑓)𝑇 R (u − k𝑓)} ≤ 𝐽𝑓 (f (x, u) ; z𝑓, 𝑙) ,

(25)

where 𝐽𝑓(f(x, u); z𝑓, 𝑙) = (f(x,u) − z𝑓)𝑇Q𝑓(f(x, u) − z𝑓) and
x ∈ {x | 𝐽𝑓(x; z𝑓, 𝑙) ≤ 𝛼}. Q𝑓 is positive definite. Then 𝐽𝑓(∙)
is determined as 𝐽𝑓(x; z𝑓) = 𝑑𝐽𝑓(x; z𝑓)/𝛼. Method in [31] is
used to solve the optimization problem.

3.2.2. Iterative Online Learning. In actual situation there
are disturbances caused by inaccurate model established a
priori and invariant perception error. So, online learning
method should be considered to estimate intrinsic part of
disturbances online and make the control system effective.
As f(∙) is nonlinear in (20), disturbance Δ1 is no more
Gaussian leading to the fact that GP based estimation
method is not suitable here. So, a kind of PD iterative
online learning method is designed in this section to esti-
mate disturbances. The process is assumed to occur in an
unknown environment and robot moves to goal avoiding
obstacles in a predictive routine instead of a known iterative
path. So, compared to traditional iterative method dynamic
iterative route is used in our iterative learning algorithm.
In order to learn compensation with dynamic route, suit-
able and effective iterative function should be designed as
follows.

Kinematic model of mobile robot is used here to intro-
duce the procedure and detailed information is introduced in
Section 5.1. Then state-space system in (20) can be illustrated
as

𝑓 (x, u, w) = x + A (x) u + Δ1, (26)

where x is state of system, u is control input, and Δ1 is
disturbance need to be learned.

Each iteration has 𝑘 equations, but start and end points
are different. The demonstration of choosing iteration route
is illustrated intuitively in Figure 4. There are two trials end
at points 1 and 2, respectively, during the process; start points
can be got due to same steps 𝑘.
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In order to use this form of iterative route, a new variable
is defined: 𝜎 = z − x. According to (26), 𝑘 equations can be
got:

𝜎2 = z2 − x2 = z2 − x1 − A1u1 − Δ1
= z
1
− x1 + A1k1 − A1u1 − Δ1

= 𝜎1 + A1k1 − A1u1 − Δ1
𝜎3 = z3 − x3 = z2 − x2 + A2k2 − A2u2 − Δ2

= 𝜎2 + A2k2 − A2u2 − Δ2
= 𝜎1 + A1k1 − A1u1 + A2k2 − A2u2 − Δ1 − Δ2

... ,

(27)

where z, k, and A are variables of references produced by
RFNN in Section 3.1. In order to simplify representation, Δ1𝑘
is replaced byΔ𝑘 above.Then the lifted form can be organized
as

𝜎𝐾 = 𝜎0 − BΔ𝐾, (28)
where𝐾 represents iteration and B is lower triangular matrix.
Component of each item is shown as

𝜎𝐾 =
[[[[[[
[

𝜎2

𝜎3...
𝜎𝑘+1

]]]]]]
]

,

𝜎0 =
[[[[[[[
[

𝜎1 + A1k1 − A1u1
𝜎1 + A1k1 − A1u1 + A2k2 − A2u2...
𝜎1 + ⋅ ⋅ ⋅ + A𝑘k𝑘 − A𝑘u𝑘

]]]]]]]
]

,

Δ𝐾 =
[[[[[[
[

Δ1

Δ2...
Δ𝑘

]]]]]]
]

.

(29)

Although the system illustrated by (26) is nonlinear, it is
Lipschitz continuous. According to [32], linear method can
deal with this kind of problem well. Compared to nominal
discrete-time system introduced in [33], the initial conditions
in (28) are different at each iteration. Many methods can
be used to settle this problem such as initial state learning
mechanism or smooth interpolation. As shown above, 𝜎0 is
made up of discrepancy at all steps in each trajectory. Suppose
the first two iterations are convergent, then 𝜎0 decreases in
later iteration and is upper bounded. So, a simple forgetting
factor 𝜆𝑓 is used to discount integration effect of iterative
learning. Then a kind of PD-type iterative learner is used:

Δ𝐾+1 = 𝜆𝑓Δ𝐾 + 𝜆𝑝R𝐼𝐿e𝐾 + 𝜆𝑑 (I − R𝐼𝐿) e𝐾, (30)

where 𝜆𝑝 and 𝜆𝑑 are proportional and derivative learning
gains, respectively. R𝐼𝐿 is lower triangular Toeplitz matrix
derived from column vector [0, I, 0, . . . , 0]𝑇 where 0 is matrix
with 0 elements and I is 𝑛2 × 𝑛2 unit matrix.

For iteration 𝐾, error can be defined as

e𝐾 = 𝜎𝑑 − 𝜎𝐾, (31)

where 𝜎𝑑 represents desired error between actual state and
optimal predictive state and it is usually 0. Substituting (31)
and (28) into (30) yields closed-loop iteration dynamics:

Δ𝐾+1 = (I + (𝜆𝑝R𝐼𝐿 + 𝜆𝑑 (I − R𝐼𝐿)) B)Δ𝐾
+ (𝜆𝑝R𝐼𝐿 + 𝜆𝑑 (I − R𝐼𝐿)) (𝜎𝑑 − 𝜎0) . (32)

According to [33], iterative learning process is asymptotically
stable, if

𝜌 (I + (𝜆𝑝R𝐼𝐿 + 𝜆𝑑 (I − R𝐼𝐿)) B) < 1, (33)

where 𝜌(∙) is spectral radius operator.
4. Stability Analysis

According to Figure 2, the control system is made up of two
parts. So, in order to analyze stability of the system, each part’s
stability should be guaranteed.

4.1. Convergence of Recurrent Fuzzy Neural Network. In this
paper, a training method based on EKF is used as shown
in Section 3.1. Appropriate parameters should be designed.
Then, by iteratively calculating (12)∼ (15) trajectories are gen-
erated. By evaluating these trajectories, suboptimal trajectory
is chosen.

Observation vector, o𝑘, is first expanded at final stable
weights a𝑑 as

o𝑘 = O (a𝑑) + (a𝑘 − a𝑑) 𝜕o𝜕a
+ 𝜉𝑘, (34)

where 𝜉𝑘 is first-order approximation residue and O(∙) is
mapping function from weights to observation. Error of
weights can be defined: e𝑎𝑘 = a𝑘 − a𝑑.

Then, Lyapunov function can be chosen as

𝐸𝑘 = e𝑇𝑎𝑘P
𝑇
𝑘 e𝑎𝑘. (35)

The difference can be calculated as
Δ𝐸 (𝑘) = 𝐸 (𝑘 + 1) − 𝐸 (𝑘)

= e𝑇𝑎(𝑘+1)P
−1
𝑘+1e𝑎(𝑘+1) − e𝑇𝑎𝑘P

−1
𝑘 e𝑎𝑘

< [e𝑎(𝑘+1) − e𝑎𝑘]𝑇 P−1𝑘 e𝑎𝑘

− e𝑇𝑎(𝑘+1) [P𝑘+1 − Q𝐸𝐾𝐹𝑘 ]−1 P𝑘O
𝐸𝐾𝐹
𝑘 𝐻

−1
𝑘 𝜉𝑘,

(36)

where𝐻𝑘 = R𝐸𝐾𝐹𝑘 + O𝑇𝑘P𝑘O𝑘. Then following inequation can
be got according to [28]

Δ𝐸𝑘 < 3 𝜉𝑘2𝑟𝑘 − 𝑒𝑘2(𝑜𝑘/𝑚 + 𝑟𝑘) , (37)
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where 𝑜𝑘 is the trace of O𝑇𝑘P𝑘O𝑘, R𝑘 = 𝑟𝑘I. I is𝑚×𝑚 identity
matrix and 𝑟𝑘 is a positive real number. For details of inference
formula refer to [28].

As mentioned above, O and R determine convergence
of EKF training process. O is derived from observation
vector o. In order to guarantee effectiveness of recurrent
fuzzy neural network structure, o should be constructed
reasonable. According to (6) ∼ (16),

O = 𝜕o𝜕z
𝜕z𝜕s

𝜕s𝜕a
, (38)

where 𝜕z/𝜕s illustrates plant information, 𝜕s/𝜕a illustrates
RFNN structure information, and 𝜕o/𝜕z illustrates relation
between observation and plant’s state. Jacobian matrix, O,
reflects performance of chosen weights to system. Then R is
designed considering O to realize convergence of strategy.

In (37), system is convergent if Δ𝐸𝑘 < 0 and then 𝑟𝑘
should be set as

𝑟𝑘 > 3𝑜𝑘 𝜉𝑘2𝑚(e𝑘
2 − 3 𝜉𝑘2) , (39)

where each element of 𝜉𝑘 is normal distribution as 𝜉𝑖𝑘 ∼𝑁(0, 𝑟𝑘); then
3𝑜𝑘𝑚 < 𝑟𝑘 <

e𝑘
264𝑚 , (40)

with 99.99% 𝜉𝑘 being bounded.
And 𝑟(𝑘) adaption law is got:

𝑟𝑘 = 12 (e𝑘
264𝑚 + 3𝑜𝑘𝑚 ) , (41)

which can make control system’s error convergent, i.e.,
bounded e𝑘.

As mentioned in Section 3.1, initial weights are generated
in random leading to predictive trajectories being different
with different initial weights. Initial weights are represented
as

{a10 a20 ⋅ ⋅ ⋅ a𝑙0 ⋅ ⋅ ⋅} , (42)

where each element corresponds to an independent trajec-
tory produced by EKF training method. Somemethod can be
chosen to learn initial weights, but a simple method of iter-
ation is used to economize computation cost and guarantee
real-time program ability. Considering practical condition,
evaluation of optimal trajectory is different especially in
dynamic navigation problem. With evaluation criteria, a0 is
chosen to obtain suboptimal trajectory.

4.2. Stability and Robustness of Nonlinear Model Predictive
Control. By using RFNN based planner, a set of trajectories
are obtained in (21) to approximate optimal path in dynamic
environment. MPC method is then used to limit states of
robot in a tube around the optimal path under disturbance
Δ1.

For each trajectory in T , suppose there is 𝑑 > 𝑑 and
bounded area around trajectory is 𝑆𝑑 = {x | 𝐽min(x, 𝑘, 𝑙) ≤𝑑}. Let x∗ = z denotes generated state of nominal system;
i.e., x𝑘+1 = f(x𝑘,u𝑘) + C, with input u∗ = k. Since f(∙) is
Lipschitz continuous, ‖x∗𝑘 −z𝑙𝑘‖ ≤ 𝐿‖x−z𝑙0‖ for all x ∈ 𝑆𝑑+Δ1.
According to (22) and (25), there exists 𝑑1 such that

𝐽min (x, 𝑘, 𝑙) ≤ 𝐽 (x, u∗, 𝑘, 𝑙) ≤ 𝑑1 x − z𝑙0
2 . (43)

Stability condition is established in (25); then

𝐽min (x, 𝑘 + 1, 𝑙) ≤ 𝐽min (x, 𝑘, 𝑙)
− (x − z𝑙0)𝑇Q (x − z𝑙0)
− (𝜅𝑘 − k𝑙0)𝑇R (𝜅𝑘 − k𝑙0) .

(44)

There is also lower bound due to weight matrix Q, so

𝐽min (x, 𝑘, 𝑙) ≥ 𝑑2 x − z𝑙0
2 . (45)

Combine (43) ∼ (45), and

𝐽min (x, 𝑘 + 1, 𝑙) ≤ (1 − 𝑑2𝑑1) 𝐽min (x, 𝑘, 𝑙) . (46)

In practice, the surroundings where robot needs to achieve
navigation can be entirely or partially detected by sensors.
Suppose the change of surroundings is continuous and not
too fast relative to robot’s motion. Then disturbance Δ1 is
bounded. Let Δ = max{‖Δ‖ | Δ ∈ Δ1}. According to [29],
for all x ∈ 𝑆𝑑 and x𝑘+1 = f(x𝑘, u𝑘) +Δ1, there is a constant 𝑑3
such that

𝐽min (x, 𝑘 + 1, 𝑙) ≤ (1 − 𝑑2𝑑1) 𝐽min (x, 𝑘, 𝑙) + 𝑑3 Δ1
≤ (1 − 𝑑2𝑑1) 𝐽min (x, 𝑘, 𝑙) + 𝑑3Δ.

(47)

If (𝑑2/𝑑1)𝐽min(x, 𝑘, 𝑙) ≥ 𝑑3Δ, (47) becomes

𝐽min (x, 𝑘 + 1, 𝑙) ≤ 𝐽min (x, 𝑘, 𝑙) ≤ 𝑐1𝑐3Δ𝑐2 . (48)

So, there exists constant 𝑑 = 𝑐1𝑐3Δ/𝑐2 that limits actual path
of robot in a tube of optimal trajectory generated by RFNN.

After analysis and design of the overall system, whole
strategy of navigation is illustrated as Algorithm 1.

5. Experiments

5.1. Model of Mobile Robot. In order to approve effectiveness
of our control system, a kind of differentially driven mobile
robot system model in [9] is used here. The robot model in
unknown environment with obstacles and target is illustrated
as in Figure 5.
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Initialization: x0 = 0, obtain initial position of target and obstacles, x𝑡𝑎𝑟𝑔𝑒𝑡, x𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.
set c,𝜎, QΔ, 𝛾, 𝜂, Δ 𝑏𝑜𝑢𝑛𝑑, Q, R, (𝑑/𝛼)Q𝑓, 𝜆𝑓, 𝜆𝑝, 𝜆𝑑
while ‖x − x𝑡𝑎𝑟𝑔𝑒𝑡‖>𝛽 do

Prediction: Predict robot motion according to (4) ∼ (16) and (33) ∼ (39).
Generate trajectory in T as well as referential states and control commands, i.e. z, k.
while Δ < Δ 𝑏𝑜𝑢𝑛𝑑 do

Tracking: Generate actual control command, u, according to (21) ∼ (30).
Sensor: Measure distance and angel information among target, obstacles and robot, i.e. y.
Location: Estimate state of robot, obstacle and target, i.e. x, x𝑡𝑎𝑟𝑔𝑒𝑡, x𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.
Update Δ, x, x𝑡𝑎𝑟𝑔𝑒𝑡, x𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.

Algorithm 1: Navigation strategy.

Obstacle

Target

R b

w

X

Y

O1 O2

l

dg

do

g

o

r

(x, y)

Figure 5: Model of mobile robot in unknown environment.

Robot is motivated by right and left wheels, [V𝑟, V𝑙]𝑇.
Linear and angular velocities are

V = V𝑟 + V𝑙2 , (49)

𝜔 = V𝑟 − V𝑙2𝑏 , (50)

𝑅 = 𝑏V𝑟 + V𝑙
V𝑟 − V𝑙

, (51)

Difference equation is then illustrated as

x𝑘+1 = x𝑘 + Δ𝑡 [[
[
cos 𝜃𝑘 0
sin 𝜃𝑘 0

0 1
]]
]

u𝑘, (52)

where u = (V, 𝜔)𝑇. x𝑘, x𝑘+1 are robot’s postures at 𝑘 and 𝑘 + 1
steps, respectively, and are represented as x = [𝑥, 𝑦, 𝜃]𝑇.

Distance and angle of target and nearest obstacle corre-
sponding to robot are chosen as measurement, so output is
represented as

y𝑘 = [𝑑𝑔𝑘, 𝜃𝑔𝑘, 𝑑𝑜𝑘, 𝜃𝑜𝑘]𝑇 . (53)

Table 1: Initialization of parameters.

𝑏 0.2m Δ 𝑏𝑜𝑢𝑛𝑑 0.5

c [[
[

0 0 −𝜋2 −𝜋210 5 𝜋2 𝜋2
]]
]

𝜆𝑝 0.1

𝜎 [2.5 1 1 1] 𝜆𝑑 3
𝜂 [0.3 0.3 ⋅ ⋅ ⋅] 𝜆𝑓 0.9
𝛾 0.3 𝛽 0.5

As shown in Figure 5, a sparse representation of obstacles is
used to train RFNN. Circles with center on obstacle represent
dangerous area. Radius of circle depends on EKF learning
method and estimation error. Location of obstacle is usually
not accurate leading to error of centers’ position shown in
figure. Distance between 𝑂1 and 𝑂2 depends on 𝑏. Although
RFNN structure is convergent, robot will vibrate at terminal
position due to feedback control principle. When robot
reaches area determined by 𝛽, a brake control is used.
5.2. Performance in Static Condition with Bounded Distur-
bance. Simulation experiment is carried out using Matlab.
Activity space is limited in 10m × 10m.There exist obstacles
and target. Mobile robot needs to reach target and avoid
obstacles. Constant parameters to be initialized are listed
in Table 1. The weight matrices are set with 25 : 15 : 1 ratio
weighting position-tracking error and linear and angular
velocity control input in (22). The weight QΔ is switched
between two sets due to position corresponding to target and
obstacles.

Proposed method is first examined in static environment.
As environment is static, only one prediction of optimal
motion of robot is generated and the weights of RFNN are
shown in Figure 6. There is no drastic variety underlying
smoothness of process. Gaussian noise with mean zero and
variance of 0.03 is injected to system named as disturbance 1.
And 20 trajectories are generated under random disturbance.
Performance is shown as in Figure 7. All trajectories are
bounded in a band. Each trajectory of robot can realize
reaching adjacent area of target and avoiding obstacles.
Optimal and robust navigation is achieved. Position error
curves of robot are shown in Figure 8(a), which are bounded
in a narrow band. Figures 8(b) and 8(c) represent linear
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Figure 6: Weights of RFNN.
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Figure 7: Performance in static environment: 20 trajectories with disturbance 1.

and angular velocities of robot, respectively. They are not
narrow contrasted to position error for the reason that input
commands should control robot against random disturbance
and limit robot’s position in a narrow tube. Computation cost
of generating optimal control command at each step is shown
in Figure 9. Lines in red are average values.

5.3. Performance of Online Iterative Learning Method. In
order to examine online iterative learning method proposed,

Gaussian noise with mean 0.1 and variance of 0.03 is injected
to system named as disturbance 2. 20 trajectories are also
generated under this random disturbance. Performance is
shown as Figure 10. For neat expression only one trajectory
without iterative learning in magenta is shown in figure.
This trajectory is dangerous and does not lie in stable tube.
Trajectories with iterative leaning are illustrated in cyan
and are same as trajectories under disturbance 1 underlying
estimation method which is effect. Estimation of disturbance
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Figure 8: Position error and control inputs of robot with 20 trajectories.

Computation cost

C
om

pu
ta

tio
n 

co
st 

(s
)

20 40 600
Time in samples

0

0.5

1

1.5

2

Figure 9: Computation cost at each step of 20 trajectories.

2 is shown in Figure 11. Detailed information is shown in
Table 2. There is not much difference of values in each item

between two conditions. The largest bias at each point of
20 trajectories under two conditions is shown in Figure 12.
The largest bias of trajectories under disturbance 2 is a little
higher.

5.4. Comparison with Other Methods. The main novelty of
proposed method in this paper is that a motion planning and
control method based navigation strategy is proposed to deal
with uncertainty and guarantee robust optimization of the
process. The dual-layer structure is designed to be feasible
and effective by combining RFNN and MPC method. Many
motion planning techniques are used to achieve navigation,
like potential field method, sampling based planner, interpo-
lation curve method, A∗, neural network, fuzzy logic, genetic
algorithm, particle swarm optimization, etc. A∗ method is
widely used in autonomous vehicles for its efficiency [34].
Furthermore, OPTI toolbox ofMatlab includesmany optimal
solvers that can be used to design nonlinear planner. In
order to introduce our method’s effectiveness, A∗ method
together with OPTI based numerical optimization method
is compared with ours. As control policy is considered in
our method, PID method in [35] is used for two planners
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Table 2: Evaluation of trajectories in static environment.

Prediction cost (s) Step Average distance
(m)

Average terminal
error (m) Average bias (m)

Trajectories under disturbance 1 4.13 63 9.82 0.36 0.061
Trajectories under disturbance 2 4.13 63 9.86 0.35 0.067
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Figure 11: Estimation of disturbance 2.

above forming complete navigation system just like ours.
Performance is shown in Figure 13. A∗ method just plans
positions of robot, leading to bad tracking performance
under disturbance which is reflected by tracking error in
Table 3 and the path in red with rectangle marks. The
trajectory is not smooth contrasted to our method and OPTI
and PID method. PID control method that lacks online
learning mechanism fails to drive robot to target when
disturbance in Figure 10 acted on system, which is reflected
by red path with triangle marks. Compared to A∗ and PID
based strategy, OPTI and PID method that plans motion
performs better. But OPTI based planner takes up too much
computation cost reflected in Table 3 leading to bad real-
time planning ability. Detailed information of these methods’
performance is illustrated in Table 3. It is proved that our
method can achieve good online navigation.

5.5. Performance in Dynamic Condition. Proposed method
is then examined in dynamic environment. Performance is
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Table 3: Comparison between our method and others.

Distance (m) Step Computation cost (s) Terminal error (m) Tracking error (m)
OPTI & PID 10.132 60 37.891 0.289 0.048
A∗& PID 1 10.389 62 0.512 0.402 0.059
A∗& PID 2 6.209 37 0.512 3.889 0.231
OURS 10.090 62 3.142 0.251 0.040
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Figure 12: Largest bias at each step under two conditions.
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Figure 14: Continued.
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Figure 14: Trajectory of robot in dynamic environment.
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shown in Figure 14. Dynamic obstacles referred to in Figure 7
keep moving during process. Trajectories of obstacles are
shown in Figures 14(a)–14(d). Target also keeps moving
during the whole process. RFNN needs to update predictions
depending on changes of surroundings limited by threshold
settled above. Andmeasured Δ varying with time is shown in
Figure 15. Each state in Figures 14(a)–14(f) is corresponding
to zero point of Δ in Figure 15. Six predictions are generated
during the whole process. As seen in Table 4, the first four
predictions are generated due to (17) ∼ (19) and last two are
generated due to runout of steps. Changes of RFNN weights
are shown in Figure 16. Detailed information of different
phases is shown in Table 4. Position error between robot and
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Figure 16: Changes of RFNN weights.

target is shown in Figure 17(a). Linear and angular velocity
of robot is shown in Figures 17(b) and 17(c). As shown
above, optimal and robust navigation is achieved in dynamic
environment.

5.6. Hardware Experiments on a Vehicle. In this section, we
will validate navigation strategy presented in this paper on a
differential driven vehicle.Theonboard processor of vehicle is
STM322F407 that is responsible for real-time control. All the
online computation, including localization,motionplanning,
and optimal control command generation, is performed on
a computer with Intel i5 2.3 GHz processor and 8 GB RAM.
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Figure 17: Position error and control inputs of robot in dynamic environment.

Table 4: Evaluation of trajectories in dynamic environment.

Trajectory 1 2 3 4 5 6
Cost of prediction (s) 4.13 1.47 1.25 0.38 0.02 0.003
Predicted step 63 49 42 51 29 27
Actual step 9 8 37 42 29 27
Predicted distance (m) 9.72 5.11 4.93 2.08 2.06 1.54
Actual distance (m) 2.16 1.87 5.27 2.37 2.30 1.59
Predicted terminal error (m) 0.36 0.41 0.38 0.41 0.42 0.37
Actual terminal error (m) 7.45 5.40 1.87 2.55 1.92 0.37

Commands are sent through a 2.4GHz Bluetooth transmitter
at an update rate of 50 Hz.

The experiment is carried out in indoor environment as
shown in Figure 18. There are two moving tracked mobile
robots between our robot and target.The robot needs to reach

target and avoid collisionwith them.The software running on
the computer is developed based on the ROSmiddleware. 2D
map of surroundings is established using LIDAR carried on
the front of robot. Adaptive Monte Carlo localization method
is used to localize robot’s position. RFNN based motion
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Figure 18: Experimental surroundings.
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Figure 19: Performance of vehicle. Trajectories in red are predictions, and trajectory in blue reflects actual positions of vehicle.

Table 5: Comparison between simulation and hardware experiment.

Predicted
distance (m)

Actual
distance (m)

Predicted
step

Total prediction
cost (times) (s)

Average
computation cost

(s)
Total time taken (s) Average tracking

error (m)

Simulation 15.186 15.606 153 7.253(6) 0.551 102 0.230
Hardware 7.361 7.577 47 0.727(2) 0.539 65 0.156

planner is used for global optimization programming. NMPC
based controller is used for robust optimal control. The
performance is shown in Figure 19.The trajectories in red are
optimal predictions of robot’s motion. Optimal prediction is
updated due tomoving obstacle. Figure 20 illustrates changes
of Δ which is tanglesome contrasted to Figure 15. Trajectory
in blue is actual motion of robot. Motion state is reflected
in Figure 21. Computation cost and changes of weights
are, respectively, shown in Figures 22 and 23. Comparison
between hardware and simulation experiment in Section 5.5
is shown in Table 5. As prediction cost depends on distance
between vehicle and target, simulation experiment takes up
more computation than hardware experiment and prediction

time is more. Average computation cost of both experiments
at each step is about half a second. Average tracking error
of hardware experiment is higher than simulation for the
reasons of effective location method in actual situation.
According to hardware experiment, our method’s effective-
ness is proved.

6. Conclusion

In this paper, a combined nonlinear model predictive control
and recurrent fuzzy neural network approach is designed
to achieve robust and optimal navigation in unknown and
dynamic environment. Controller is separated into two parts
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Figure 21: Motion condition of vehicle.

depending on disturbances of system forming dual-layer
structure. RFNN based dynamic program is used to predict
optimal trajectory in unknown environment. NMPC is used
to track optimal trajectories against location and model
error. By applying our method to wheeled mobile robot,
simulation experiment is carried out. According to analysis of
experiment results, robustness and optimization of designed
strategy are proved. Although proposed method is used in
ground robot system, it is also applicable to UUV, UAV, space
aircraft, etc. Because problem described in Section 2 and
working in Section 3 are not specific to a certainmodel, in our

future work, perception ability mentioned in Section 1 will be
considered in practical navigation system.
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